FORM for Computer Algebra in Particle Physics

FLINT Development Workshop

Josh Davies

E&4d UNIVERSITY OF

&/ LIVERPOOL

28th October, 2025

Why Particle Physics?

What is the Universe made of?
e what are the building blocks of matter, how do they interact?
e do the known particles behave as the Standard Model predicts?
e is there Beyond the Standard Model physics?
e how to explain neutrino oscillations, Baryon asymmetry?
e what is dark matter?
e can we reconcile the SM with Gravity?

The Large Hadron Collider is our energy-frontier machine which aims
to answer these questions.

o it collides high energy protons, and measures the results
e collaboration between experimental and theoretical physicists

[CC-BY—SAJ

117

https://cds.cern.ch/record/1211045

LHC Particle Interactions

Hadron collisions are very complicated!
e Parton Distribution Functions
e Hard interaction < want to measure this
Parton shower
Hadronization
Hadron decays
Secondary interaction

We need to make theoretical predictions for all of
these processes, which can be compared with our
experimental measurements.

Predicting hard interaction scattering rates is the
computer-algebra intensive part. plear
[Gleisberg, Hoche et al. ‘08]

/17

Hard Interactions: Perturbative Approach

Starting from a Lagrangian, we derive Feynman Rules for a perturbative description
e assume couplings are small
o define how particle fields propagate (edges) and interact (vertices)

Lacp = —4F§VFW + 3y (i —m) 4y
l
%ﬁ, L g fabe (g [ky — k)P + 7P ke — ksl + g7 [ks — Ki]¥), >\04 - —igyn(t3),
Q00 ¢ (g + (6 - 1155), —

Using these “puzzle pieces”, we can describe particle interactions:

R S O

/17

Computing Scattering Amplitudes

Using the Feynman rules, we can generate scattering amplitudes up to some perturbative order.

The standard set of “straightforward steps”:

1. Generate appropriate diagrams

2. Insert Feynman rules
Simplify/process/compute
Integration-by-Parts Reduction of loop integrals
Compute “Master Integrals”

ok~ ow

In practice, these steps are extremely challenging, both computationally and mathematically.

Many bespoke software packages have been developed for such computations:
Graph generators: ggraf, FORM, FeynGraph

Computer algebra: FORM, various packages for Mathematica, Symbolica
IBP reduction: FIRE, Kira, LiteRed, ...

Numerical integration: pySecDec, FIESTA

4/17

The Need for Computer Algebra

The number of graphs/diagrams grows as a factorial with the perturbative order.

\gm@m = (1 dia) + g?(4 dia) + g*(26 dia) + g°(473 dia) + g®(12K dia) + g'°(381K dia) - - -

The complexity of each diagram grows with the perturbative order.
e more loops:

mg:;?;qw Feynman rules generate 144 terms (— 40 after merges)
mgggmb Feynman rules generate 41K terms (— 2833 after merges)
&%ﬁ& Feynman rules generate 12M terms (— 279K after merges)

e more external particles: increasingly multivariate coefficients, complicated integrals

5/17

Integration-by-Parts Reduction

Scattering amplitudes depend on “loop integrals” over the internally unconstrained momenta:
e difficult to compute, but fortunately these integrals are not all independent
e expose linear relations between them via “integration-by-parts identities”
e solve these relations to reduce to a basis set of “master integrals”

Conceptually easy but technically difficult:
¢ set of (potentially) millions of integrals — more millions of (sparse) linear relations
o coefficients are multivariate polynomials
e requires large systems with lots (multi-TB) of RAM

We have dedicated software to solve this problem as efficiently as we can manage:
e FIRE, Kira, ... various others
e not Computer Algebra Systems, but rely on high-performance polynomial arithmetic
e FIRE uses FLINT for poly arithmetic, Kira for finite-field arithmetic
o (both have previously relied/rely on Fermat for poly arithmetic)

e “Recent” (in our field) optimization: sample the solution over finite fields, reconstruct
e helps for some problems, but not all

6/17

An (Incomplete) History of Computer Algebra in Particle Physics

Schoonschip (1963) Veltman: First CAS.
e For CDC and Motorola 68000. Landmark computations involving 50K terms.

Then a lot of development, for e.g.:
e Macsyma, REDUCE (1968), SMP (1981), Maple (1982), Fermat (1985), Mathematica (1988)

FORM (Jos Vermaseren) designed as a spiritual, portable (c), successor to Schoonschip for HEP:

e FORM 1 (1989), (work started in 1984)

e FORM 2 (1991), commercial package requiring license and fee

e FORM 3 (2000), free (gratis), early parallelisation implementations (MPI)

e FORM 3.3 (2010), free (libre GPLv3), pthreads parallelisation, GMP

e FORM 4 (2012), polynomial arithmetic routines

e FORM 4.1 (2013), expression optimization routines

e FORM 4.2 (2017), features for a particular package (FORCER)

e FORM 4.3 (2022), mostly bug fixes

e FORM 5 (2025), diagram generator, floating-point coeff. mode, FLINT interface

Since 2023, annual “Developers’ Workshops” to discuss future direction, feature requests, etc.
o effort to engage wider community in development since the retirement of Vermaseren in 2018

7/17

Why FORM?

FORM was developed specifically with the needs of high-energy physics computations in mind:
processing of enormous expressions, not limited RAM (potentially ~10TB...)

efficient handling of Dirac algebra

optimizing large expressions for fast numerical evaluation in compiled code

easy-to-use parallelization

free and open source (since 2000, 2010) [https://github.com/form-dev/form]

Vast majority of cutting-edge multi-loop computations have used FORM, including
four and five loop QCD beta function

three (and four, partially) loop Splitting Functions for PDF evolution

three loop quark and gluon form factors

e many two loop 2 — 2 scattering amplitudes

FORM papers have over 3K citations. Papers which cite FORM have ~140K citations.
It has had an enormous impact on our ability to analyse LHC data.

/17

https://github.com/form-dev/form

A ample FORM script

Symbol x,y, z; FORM 5.0.0-beta.l (Oct 21 2025, v5.0.0-beta.l1-255-
CFunction f,g; g9b7e97d) Run: Mon Oct 27 13:53:06 2025

Local test = (x+y)”"3 + £(1,2,y,3,y,4)
+ £(1,x%,2,3) + g(1,1);
Generated terms
Terms in output
b,x?,%¢c) = g(?a,?b,?c); Bytes used

test =
z°3 + £(1,%,2,3) + g + g(1,2,3,4);

38 Generated terms
2 Terms in output
Bytes used
(z,1) >0) || ((£7(7a,12,7b))));
2k test =
2xz"3 + £(1,%,2,3) + g + 2%g(3,6,9,12);

0.00 sec out of 0.00 sec

e All vars defined + typed e Patterns are term-local e x? : wildcard (MMA x_)
e Everything is always expanded e Wildcard type meaningful e 2a: argfield (MMA a_)

Term processing and sorting system

FORM's multi-level sorting of huge expressions makes it uniquely suited for our computations.
e computer memory has grown over the years, but so has the size of our calculations

e each “module” is processed with the following structure:

input terms

small buffer | w | w | x

large buffer

disk

output terms|

alpfefaf -

| [in memory or on disk]

0

module term processing statements

z

Z

| [in memory, ~10GB]

L

\|

N*\L*Vl
n

full? merge-sort

| [in memory “patch”, ~100GB]

/‘ull? k-way merge of sorted patches

[on disk, “patch”, ~??TB]

finished? final sort to output

| | [in memory or on disk]

L
lilil

Symbol a,b,
Local test

’

c

Term-by-term processing as “depth-first tree”.

This design enables this sorting procedure,
but limits pattern matching flexibility.

k > kmax? disk—disk patch merge.
Disk patches are compressed (z1ib, zstd)

Buffer sizes are all user-configurable.

The output becomes the next module’s input.

10/17

Parallelization in FORM

Parallelization in TFORM (pthreads) and ParFORM (MPI) (deprecated)
e share (batches of) input terms between workers which process and sort in parallel
o final (parallel binary) merge of sorted results from each worker
¢ (almost) no modification of user scripts required! Very easy to use.

l LLLLT - l LLLLT - l INNN

Va Wi Wi

§3»u §y»u §!4« §!4« o2

HEEE “sortots” RN |

\/

outputterms| [[| |

] —
] —
] —

11/17

Polynomial Operations in FORM

Built-in functions, which use built-in polynomial code (~2012)
e gcd_,div_, rem_ ,mul_, inverse_
e Factorization of expressions, function arguments, dollar variables
e PolyRatFun : rational-polynomial term coefficients

Symbol x,y,z,n;
CFunction rat,num; 0.00 sec Generated terms
PolyRatFun rat; test Terms in output
Bytes used
Local test = (x+y+z/y)"3
+ num(((x+y) "2% (x-y) , (x+y)”"3));
+ zxrat (3*x"2 + 6xx*xy + 3%xy"2,y)

x?!{z}"n? = rat(x"n,1); + z"2xrat (3*x + 3*xy,y"2)
+ z"3xrat(1l,y"3)
+ rat (x"3 + 3*x"2xy + 3*x*xy 2 + y~3,1)
+ num(y,x) "2*rat(1,1)

12/17

Interface with FLINT

FORM 5 features an interface to FLINT, for faster polynomial arithmetic.
e Requires FLINT >v3.2.0, need the fixes for:

o [FLINT #1652] (3.1) (reentrancy of gr_method_tab_init)
e [FLINT #1998] (3.2) (bug in £fmpz_mpoly_factor)

e Enabled by default if FLINT is found at compile time. Fallback to built-in code.
¢ Implements all but full expression factorization, modular arithmetic modes. TODO!

The role of the interface code:
1. translate FORM-internal representation to FLINT fmpz, fmpz poly, fmpz mpoly

-12345 * a2 * b * * d"3 — 1 20 2 21 1 23 3 12345 1 -3

1
fmpz mpoly push term fmpz ui (arg, -12345, {2,1,0,3}, ctx);

2. use FLINT poly or mpoly routines for computation
o fmpz mpoly._gcd, fmpz mpoly mul, fmpz mpoly_quasidivrem, ...
3. translate back to FORM representation, re-sort terms in FORM ordering

12/17

https://github.com/flintlib/flint/issues/1652
https://github.com/flintlib/flint/issues/1998

Performance

The FLINT routines have excellent performance, particularly for multivariate polynomials.

e minceex DIS moment test, ep-exact, univariate
e N=8: 40s — 34s (1.2x)
e N =10: 146s — 123s (1.2x)
o N =12:538s — 460s (1.2x)

e forcer IBP test, ep-exact, univariate
e 16 prop: 210s — 116s (1.8x)
e 17 prop: 583s — 287s (2x)
e 18 prop: 1673s — 873s (1.9x)

e mbox11 IBP (1L box, vars d, g12, §13, Ga3, m?) multivariate
mbox11(2,2,2,1):0.97s — 0.26s (3.7x) m? 33
mbox11(3,2,2,2): 18.4s — 1.18s (16x)
mbox11(3,3,2,2): 76.3s — 2.58s (30x)
mbox11 (3, 3,3, 3): 514s — 10.3s (50x)

[Single-thread reduction of mbox11 (3, 3,2, 2): 12.2s (FORM), 329s (MMA 14.2, LiteRed vl.84)]

14/17

Performance (ll)

[Takahiro Ueda’s polybench] (~100x, depending on settings...)

nontrivial-gcd (uniform, # vars = 5, max degrees = 40, max # terms = 60) nontrivial-factor (uniform, # vars = 5, max degrees = 30, max # terms = 50)

102 4 102 4

100 4

T
i
gl

Elapsed time (s)
Elapsed time (s)
-
<

b
U

t
f
]
i
.
s
j
B
+H+

1072 4
1073 4 1072 4
& S N & N & & S N X 3 &
S Q S & 5 RS 8 Q S RS 5¢
& B &L & L & 3 < &L & & &
& K & & 2
& 2 & 9

15/17

https://github.com/tueda/polybench

Performance (lll)

There are edge cases to deal with, e.g.: ged_(1-x"20,1-x"10000000)
e Off flint; 60ms
e On flint; 249ms
e On flint; 13ms (but force use of mpoly)

This is because fmpz poly is dense, fmpz mpoly is sparse (and FORM built-in is sparse).
e investigating adding a “density” heuristic: (num. terms)/(max degree) < 0.02 ? Use mpoly.

ged_(1-x420,1-xAN) : : gcd_(1 -x"20‘,1 -X"N)
T T

1 — poly — poly

04

02

F
F
E — mpoly : —— mpoly
F
F
F
i

1 1 1 1 0.0k, 1 1 1 1 1 |
0 50 100 150 0 50 100 150 200 250

Input like this doesn’t typically occur in “real physics calculations”, anyway.

16/17

Conclusions

FORM has been one of our most important software packages for decades, and will continue to be!
e used directly for computation, by many people
e used by a variety of packages
e new packages are still being actively developed which use FORM

FORM is not averse to using external libraries:
e GMP, MPFR, zlib, zstd, and now FLINT
e excellent way to incorporate effort and expertise from other fields!

There has been a lot of development in the last few years,
e (despite retirement of Vermaseren and lack of financial support)
e Developers’ Workshops have been very effective

17/17

	Introduction
	

