
FORM for Computer Algebra in Particle Physics

FLINT Development Workshop

Josh Davies

28th October, 2025

Why Particle Physics?

What is the Universe made of?
• what are the building blocks of matter, how do they interact?
• do the known particles behave as the Standard Model predicts?
• is there Beyond the Standard Model physics?
• how to explain neutrino oscillations, Baryon asymmetry?
• what is dark matter?
• can we reconcile the SM with Gravity?
• ...

The Large Hadron Collider is our energy-frontier machine which aims
to answer these questions.
• it collides high energy protons, and measures the results
• collaboration between experimental and theoretical physicists

[CC-BY-SA]
1/17

https://cds.cern.ch/record/1211045

LHC Particle Interactions

Hadron collisions are very complicated!
• Parton Distribution Functions
• Hard interaction← want to measure this
• Parton shower
• Hadronization
• Hadron decays
• Secondary interaction

We need to make theoretical predictions for all of
these processes, which can be compared with our
experimental measurements.

Predicting hard interaction scattering rates is the
computer-algebra intensive part.

[Gleisberg, Höche et al. ‘08]

2/17

Hard Interactions: Perturbative Approach
Starting from a Lagrangian, we derive Feynman Rules for a perturbative description
• assume couplings are small
• define how particle fields propagate (edges) and interact (vertices)

LQCD = −1
4

F a
µνFµν

a + ψ̄i
(
i /D −m

)
ij ψj

↓

: −g f abc (gµν [k1 − k2]
ρ + gνρ[k2 − k3]

µ + gρµ[k3 − k1]
ν),

: −i δab

k2

(
gµν + [ξ − 1] kµkν

k2

)
,

: −i g γµ(ta)j
i ,

: i δij

/p−m , . . .

Using these “puzzle pieces”, we can describe particle interactions:

? = + g2
(

+ + · · ·
)
+ · · ·

3/17

Computing Scattering Amplitudes
Using the Feynman rules, we can generate scattering amplitudes up to some perturbative order.

The standard set of “straightforward steps”:
1. Generate appropriate diagrams
2. Insert Feynman rules
3. Simplify/process/compute
4. Integration-by-Parts Reduction of loop integrals
5. Compute “Master Integrals”

In practice, these steps are extremely challenging, both computationally and mathematically.

Many bespoke software packages have been developed for such computations:
• Graph generators: qgraf, FORM, FeynGraph
• Computer algebra: FORM, various packages for Mathematica, Symbolica
• IBP reduction: FIRE, Kira, LiteRed, ...
• Numerical integration: pySecDec, FIESTA

4/17

The Need for Computer Algebra

The number of graphs/diagrams grows as a factorial with the perturbative order.

? = (1 dia) + g2(4 dia) + g4(26 dia) + g6(473 dia) + g8(12K dia) + g10(381K dia) · · ·

The complexity of each diagram grows with the perturbative order.
• more loops:

Feynman rules generate 144 terms (→ 40 after merges)

Feynman rules generate 41K terms (→ 2833 after merges)

Feynman rules generate 12M terms (→ 279K after merges)

• more external particles: increasingly multivariate coefficients, complicated integrals

5/17

Integration-by-Parts Reduction
Scattering amplitudes depend on “loop integrals” over the internally unconstrained momenta:
• difficult to compute, but fortunately these integrals are not all independent
• expose linear relations between them via “integration-by-parts identities”
• solve these relations to reduce to a basis set of “master integrals”

Conceptually easy but technically difficult:
• set of (potentially) millions of integrals −→ more millions of (sparse) linear relations
• coefficients are multivariate polynomials
• requires large systems with lots (multi-TB) of RAM

We have dedicated software to solve this problem as efficiently as we can manage:
• FIRE, Kira, ... various others

• not Computer Algebra Systems, but rely on high-performance polynomial arithmetic
• FIRE uses FLINT for poly arithmetic, Kira for finite-field arithmetic
• (both have previously relied/rely on Fermat for poly arithmetic)

• “Recent” (in our field) optimization: sample the solution over finite fields, reconstruct
• helps for some problems, but not all

6/17

An (Incomplete) History of Computer Algebra in Particle Physics
Schoonschip (1963) Veltman: First CAS.
• For CDC and Motorola 68000. Landmark computations involving 50K terms.

Then a lot of development, for e.g.:
• Macsyma, REDUCE (1968), SMP (1981), Maple (1982), Fermat (1985), Mathematica (1988)

FORM (Jos Vermaseren) designed as a spiritual, portable (C), successor to Schoonschip for HEP:
• FORM 1 (1989), (work started in 1984)
• FORM 2 (1991), commercial package requiring license and fee
• FORM 3 (2000), free (gratis), early parallelisation implementations (MPI)
• FORM 3.3 (2010), free (libre GPLv3), pthreads parallelisation, GMP
• FORM 4 (2012), polynomial arithmetic routines
• FORM 4.1 (2013), expression optimization routines
• FORM 4.2 (2017), features for a particular package (FORCER)
• FORM 4.3 (2022), mostly bug fixes
• FORM 5 (2025), diagram generator, floating-point coeff. mode, FLINT interface

Since 2023, annual “Developers’ Workshops” to discuss future direction, feature requests, etc.
• effort to engage wider community in development since the retirement of Vermaseren in 2018

7/17

Why FORM?
FORM was developed specifically with the needs of high-energy physics computations in mind:
• processing of enormous expressions, not limited RAM (potentially ∼10TB...)
• efficient handling of Dirac algebra
• optimizing large expressions for fast numerical evaluation in compiled code
• easy-to-use parallelization
• free and open source (since 2000, 2010) [https://github.com/form-dev/form]

Vast majority of cutting-edge multi-loop computations have used FORM, including
• four and five loop QCD beta function
• three (and four, partially) loop Splitting Functions for PDF evolution
• three loop quark and gluon form factors
• many two loop 2→ 2 scattering amplitudes
• ...

FORM papers have over 3K citations. Papers which cite FORM have ∼140K citations.

It has had an enormous impact on our ability to analyse LHC data.
8/17

https://github.com/form-dev/form

An example FORM script
#-
Symbol x,y,z;
CFunction f,g;

Local test = (x+y)ˆ3 + f(1,2,y,3,y,4)
+ f(1,x,2,3) + g(1,1);

Identify y = z-x;
Identify f?(?a,x?,?b,x?,?c) = g(?a,?b,?c);

Print;
.sort

Argument g;
Multiply 3;

EndArgument;

If ((Count(z,1) > 0) || (Match(f?(?a,12,?b))));
Multiply 2;

EndIf;

Print;
.end

FORM 5.0.0-beta.1 (Oct 21 2025, v5.0.0-beta.1-255-
g9b7e97d) Run: Mon Oct 27 13:53:06 2025

#-

Time = 0.00 sec Generated terms = 13
test Terms in output = 4

Bytes used = 184

test =
zˆ3 + f(1,x,2,3) + g + g(1,2,3,4);

Time = 0.00 sec Generated terms = 4
test Terms in output = 4

Bytes used = 184

test =
2*zˆ3 + f(1,x,2,3) + g + 2*g(3,6,9,12);

0.00 sec out of 0.00 sec

• All vars defined + typed
• Everything is always expanded

• Patterns are term-local
• Wildcard type meaningful

• x? : wildcard (MMA x)
• ?a : arg field (MMA a)

9/17

Term processing and sorting system
FORM’s multi-level sorting of huge expressions makes it uniquely suited for our computations.
• computer memory has grown over the years, but so has the size of our calculations
• each “module” is processed with the following structure:

input terms [in memory or on disk]...

module term processing statements0

small buffer [in memory, ∼10GB]...

large buffer [in memory “patch”, ∼100GB]

full? merge-sort

...

disk [on disk, “patch”, ∼??TB]

full? k -way merge of sorted patches

output terms [in memory or on disk]

finished? final sort to output

a b c d

w w x z

Symbol a,b,c,d,w,x,y,z;
Local test = a + b + c + d ...
Identify a = w;
Identify b = w + x;
Identify c = 0;
Identify d = z;
.sort

Term-by-term processing as “depth-first tree”.

This design enables this sorting procedure,
but limits pattern matching flexibility.

k > kmax? disk→disk patch merge.

Disk patches are compressed (zlib, zstd)

Buffer sizes are all user-configurable.

The output becomes the next module’s input.
10/17

Parallelization in FORM
Parallelization in TFORM (pthreads) and ParFORM (MPI) (deprecated)
• share (batches of) input terms between workers which process and sort in parallel
• final (parallel binary) merge of sorted results from each worker
• (almost) no modification of user scripts required! Very easy to use.

input terms ...

...

...

...

...

...

...

...

...

“sortbots”

output terms ...
11/17

Polynomial Operations in FORM

Built-in functions, which use built-in polynomial code (∼2012)
• gcd , div , rem , mul , inverse
• Factorization of expressions, function arguments, dollar variables
• PolyRatFun : rational-polynomial term coefficients

#-
Symbol x,y,z,n;
CFunction rat,num;
PolyRatFun rat;

Local test = (x+y+z/y)ˆ3
+ num(gcd_((x+y)ˆ2*(x-y), (x+y)ˆ3));

Identify many x?!{z}ˆn? = rat(xˆn,1);

FactArg num;
ChainOut num;
SplitArg num;

Print +s;
.end

Time = 0.00 sec Generated terms = 11
test Terms in output = 5

Bytes used = 688

test =
+ z*rat(3*xˆ2 + 6*x*y + 3*yˆ2,y)
+ zˆ2*rat(3*x + 3*y,yˆ2)
+ zˆ3*rat(1,yˆ3)
+ rat(xˆ3 + 3*xˆ2*y + 3*x*yˆ2 + yˆ3,1)
+ num(y,x)ˆ2*rat(1,1)

;

12/17

Interface with FLINT
FORM 5 features an interface to FLINT, for faster polynomial arithmetic.
• Requires FLINT ≥v3.2.0, need the fixes for:

• [FLINT #1652] (3.1) (reentrancy of gr method tab init)
• [FLINT #1998] (3.2) (bug in fmpz mpoly factor)

• Enabled by default if FLINT is found at compile time. Fallback to built-in code.
• Implements all but full expression factorization, modular arithmetic modes. TODO!

The role of the interface code:
1. translate FORM-internal representation to FLINT fmpz, fmpz poly, fmpz mpoly

-12345 * aˆ2 * b * cˆ0 * dˆ3 — 12 1 8 20 2 21 1 23 3 12345 1 -3
↓

fmpz mpoly push term fmpz ui(arg, -12345, {2,1,0,3}, ctx);

2. use FLINT poly or mpoly routines for computation
• fmpz mpoly gcd, fmpz mpoly mul, fmpz mpoly quasidivrem, ...

3. translate back to FORM representation, re-sort terms in FORM ordering

13/17

https://github.com/flintlib/flint/issues/1652
https://github.com/flintlib/flint/issues/1998

Performance
The FLINT routines have excellent performance, particularly for multivariate polynomials.

• minceex DIS moment test, ep-exact, univariate
• N = 8: 40s → 34s (1.2x)
• N = 10: 146s → 123s (1.2x)
• N = 12: 538s → 460s (1.2x)

• forcer IBP test, ep-exact, univariate
• 16 prop: 210s → 116s (1.8x)
• 17 prop: 583s → 287s (2x)
• 18 prop: 1673s → 873s (1.9x)

• mbox1l IBP (1L box, vars d ,q12,q13,q33,m2) multivariate
• mbox1l(2,2,2,1): 0.97s → 0.26s (3.7x)
• mbox1l(3,2,2,2): 18.4s → 1.18s (16x)
• mbox1l(3,3,2,2): 76.3s → 2.58s (30x)
• mbox1l(3,3,3,3): 514s → 10.3s (50x)

m2 q33

[Single-thread reduction of mbox1l(3,3,2,2): 12.2s (FORM), 329s (MMA 14.2, LiteRed v1.84)]

14/17

Performance (II)

[Takahiro Ueda’s polybench] (∼100x, depending on settings...)

Fe
rm

at

FL
IN

T

FO
RM

M
at

he
m

at
ic
a

re
FO

RM

Si
ng

ul
ar

Sy
m

bo
lic

a

10 3

10 2

10 1

100

101

102

E
la

p
se

d
 t

im
e
 (

s)

nontrivial-gcd (uniform, # vars = 5, max degrees = 40, max # terms = 60)

FL
IN

T

FO
RM

M
at

he
m

at
ic
a

Si
ng

ul
ar

Sy
m

bo
lic

a

10 2

10 1

100

101

102

E
la

p
se

d
 t

im
e
 (

s)

nontrivial-factor (uniform, # vars = 5, max degrees = 30, max # terms = 50)

15/17

https://github.com/tueda/polybench

Performance (III)
There are edge cases to deal with, e.g.: gcd (1-xˆ20,1-xˆ10000000)
• Off flint; 60ms
• On flint; 249ms
• On flint; 13ms (but force use of mpoly)

This is because fmpz poly is dense, fmpz mpoly is sparse (and FORM built-in is sparse).
• investigating adding a “density” heuristic: (num. terms)/(max degree) < 0.02 ? Use mpoly.

0 50 100 150

0.65

0.70

0.75

0.80

0.85

0.90

0.95

gcd_(1-x^20,1-x^N)

mpoly

poly

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

1.2

gcd_(1-x^20,1-x^N)

mpoly

poly

Input like this doesn’t typically occur in “real physics calculations”, anyway.
16/17

Conclusions

FORM has been one of our most important software packages for decades, and will continue to be!
• used directly for computation, by many people
• used by a variety of packages
• new packages are still being actively developed which use FORM

FORM is not averse to using external libraries:
• GMP, MPFR, zlib, zstd, and now FLINT

• excellent way to incorporate effort and expertise from other fields!

There has been a lot of development in the last few years,
• (despite retirement of Vermaseren and lack of financial support)
• Developers’ Workshops have been very effective

17/17

	Introduction
	

